

The next prompt below the displayed image is:

For this session enter 0, 22 for the X-axis information. These are in user
units, and for the image in figure 1, represent inches. These units can be anything
(cm, mm, volts). Note: the program will not allow the starting value to be
greater than the ending value. At this point, if you should enter only a single
point and press [ENTER], the program will return the message:

Control of this warning prompt cannot be prevented, and will cause the
screen image to roll up 1 text line. On a 25 line screen, this means that 1/25th of
the image will roll off the top of the screen. If you can still see your registration
points, you can proceed and enter the second X value. If you proceed after the
screen has rolled up 1 line, the correct X and Y values will be saved, however,
the parameter file contains incorrect axis reference information. If you need to use
the continuation option, be sure to answer (N)o to the following continuation
option:

The new registration information will be applied to all newly digitized
values, and a correction for X and Y (based on the starting X and Y values) will
be applied to the coordinates digitized during the earlier session.

If you wish to start over press [CTRL] and [BREAK].

The next prompt is:

Be sure to input both starting and ending values on the same line, and
separate them with a comma. Failure to do so will cause the screen image to roll
up another 1/25 of the screen height. If you can still see all your corner
registration points, you may proceed in the same manner described earlier. If not,
press [CTRL] and [Break] and start over.

For this example enter 0, 11.

The next prompt is:

The mouse pointer is a white arrow that points upwards and to the left. The
image has a black + with an arrow pointing to it and is labelled "Origin". Move
the pointer down to the beginning of your X axis and press the left mouse button.
The point will be stored, and a beep sounded. This point is the origin of your data
system (lower left registration point). The origin is the frame of reference for the
conversion of screen units to user units. The origin need notbeat X = 0, Y =
0.

The next prompt is:

10

Position the mouse cursor over the black + with the label "End X" and
press the left mouse button. A cyan colored line is drawn between the points.
You will next be prompted to enter the upper Y axis registration point.

Position the cursor over the black + near the label "End Y", and press the
left mouse button.

The next line that appears at the bottom of the image might look like the
following:

The first item, "X-axis CW 0.10°", informs us that the line defined by
the end points is rotated clockwise 0.10° from the horizontal. The next item, "Y-
axis CW 0.28°", informs us the Y-axis is 0.28° from the vertical in a
clockwise direction. CCW stands for counter clockwise, and CW for clockwise.
The program mathematically corrects for a rotated image, but does not correct for
an image that is skewed from normal (angles are not right angles). The third item,
"PRESS ANY KEY to proceed.", means press any key to proceed with the
program.

Earlier in this example you selected to display a grid over the image. The
grid is drawn and is colored cyan to make it stand out on the black and white
image. The grid can be used as a reference to show how regular the data image
is. If the data image is out of square with the computer screen by more than 0.5°,
the grid will be drawn, but it may appear distorted. This is because there is no
correction built into drawing the grid on a severely skewed image.

11

If the axes are skewed more than 0.5° from being normal to each other the
following prompt will appear at the bottom of the screen:

After reading this prompt and pressing any key the next prompt appears.

If "Y" is selected the grid is left on the image. If "N" is selected the screen
image is cleared and the image redrawn.

The next prompt is:

To 'start digitizing, press the left cursor button on the mouse while it is
positioned over the point to be digitized. A beep is sounded, and the values are
shown in yellow at the bottom right hand side of the screen. The first item is the
number of digitized points, the second is the scaled X value, and the last is the
scaled Y value. Move the mouse over the next point to be digitized, and press the
left mouse button again. After the next point is digitized, the previously digitized
point will be marked on the screen with a small magenta circle. The marked
points will always be one point behind the current digitized location. If you make
a mistake, or just change your mind about a recording a digitized point, press the
[ESC] key. The point counter will be reduced by one, and the removed point will

12

be indicated in red (black if your image is a B/W PCX file). All but the first point
digitized may be removed in this manner. After you have digitized the last point,
press the right mouse key to stop digitizing.

The graphic image is cleared from the screen, and a list of files in the
selected directory is displayed.

Following the directory display is a prompt requesting the output file name
for the X-Y data.

Enter up to an eight-character filename, a decimal point, and a 3 character
extension. Follow standard DOS filename conventions.
The next prompt is:

Pressing any key other than the space bar will exit the program and display

The space bar loops back to the start of the program and allows for the entry
of more X-Y data.

13

SUMMARY

This program was written to be used as a tool to increase the ease of
digitizing screen images and has worked well for several applications. One feature
that would be useful to add at a future date would be a logarithmic scaling routine.

REFERENCES

Genus Microcomputing, 1991, PCX Programmer’s Toolkit, United States.
International Business Machines Corporation, 1987, Reference--Disk
Operating System Version 3.30, Boca Raton, Florida.

Microsoft Corporation, 1987, Microsoft BASIC Programmer’s Guide
Version 7.0 For IBM Personal Computers and Compatibles, United States and
Canada.

Microsoft Corporation, 1991, Microsoft MS-DOS Users Guide and
reference--for the MS-DOS Operating System version 5.0, United States.

14

APPENDIX -- BASIC program listings
SCRNDIG.BAS

DECLARE SUB wdir (d$)

DECLARE SUB DrawGrid (startx!, starty!, endx!, endy!, kbstartx, kbstarty!, kbendx, kbendy!, phi!)
DECLARE SUB screenmode (smode%)

DECLARE SUB namechange (filein$, fileout$)

‘This screen displaying and digitizing program was developed by:

‘Philip S. Powers (USGS) and Giovanni Crosta {(University of Milano)

‘to meet a small void in the vast world of programs.

'There are several restrictions to the program.

‘1. The input image format is VGA (640X480) PCX format.

‘2. The mouse cursor is a block that sometime wipes out the digitized points.
‘3. The array dimension is set for 4000 points.

‘4, The digitized points are not painted until the next point is picked.

DEFINT B-D, F-J, L-0, Q-R, T-Z
'$INCLUDE: ’'general.bi’
'$INCLUDE: 'mouse1.bi’
'$INCLUDE: ‘gxlib.bas’
'$INCLUDE: 'pcxlib.bas’

COMMON SHARED arrayX(), arrayY()

COMMON /block1/ phi!, pointi, startx, starty, startxy, startyy, endx, endy, endxy, endyy
COMMON /block2/ UserX!, UserY!, grid%, kbstarty, kbendy, oldpointi%, SX%, SY%, es%
dimx% = 4000

dimy% = 4000

DIM arrayX(dimx%), arrayY(dimy%), x%(dimx%), y%(dimy %)

oldpointi% = 0

! Select graphics adapter
! The default is set to VGA (12)

ON ERROR GOTO wrongscrn:

IF smode% <> 12 THEN
CALL screenmode(smode%)
END IF

ON ERROR GOTO O

CLS

15

PRINT " DEPARTMENT OF THE INTERIOR"
PRINT " U.S. GEOLOGICAL SURVEY"
PRINT

PRINT

PRINT

PRINT " SCRNDIG--A BASIC program for digitizing”

PRINT from a screen image on a DOS-based computer

PRINT "

PRINT

PRINT

PRINT " by"
PRINT

PRINT

PRINT

PRINT " Philip S. Powers and Giovanni Crosta"
LOCATE 25, 1

COLOR O, 7

PRINT "To continue, PRESS ANY KEY.";
COLOR 7,0

DO WHILE INKEY$ = ""
LOOP

CLS

PRINT " * * * IMPORTANT * * * "
PRINT

PRINT "If you find it necessary to stop the program at any time,"
PRINT "press ";

COLOR O, 7

PRINT "[CTRL] [Break]. ";

PRINT

PRINT

COLOR 7,0

PRINT "To continue with the program "“;
COLORO, 7

PRINT " PRESS ANY KEY. "

COLOR 7,0

DO WHILE INKEY$ = ""

LOOP

DEF FNdeg! (phi!)
STATIC tmp!
pi! = 3.141593
tmp! = 180 / pi! * phi!

16

FNdeg! = tmp!
END DEF

runplotagn:

CLS

doagn:

kpress$ = ""

PRINT "If this is the continuation of a plot, and you would like to "
PRINT "digitize more data points where you stopped,”
PRINT "

PRINT " enter (";
COLORO, 7

PRINT"Y ";

COLOR 7,0

PRINT ")es,"”

PRINT " if not, press (";
COLORO, 7

PRINT "N ";

COLOR 7,0

PRINT ")o. "

PRINT " For HELP press (";
COLORO, 7

PRINT"H ";

COLOR 7,0

PRINT ")elp. "

DO WHILE kpress$ = ""
kpress$ = INKEY$
LOOP

cont$ = UCASE$(kpress$)

IF cont$ <> "Y" AND cont$ <> "N" AND cont$ <> "H" THEN
PRINT "Please enter Y, N, or H."
GOTO doagn:

END IF

IF cont$ = "Y" THEN
CLS
GOSUB filter:
INPUT "Enter the graphics input file name with suffix. (i.e. filename.PCX) ", pcximage$
CALL namechange(pcximage$, fileout$)
PRINT "The Default input parameter file name is: ";
COLORO, 7
PRINT fileout$ + ".par”
COLOR 7,0

17

LINE INPUT "Press [ENTER] for default, else enter input parameter file name. ", parm$

IF LEN(parm$) = O THEN
parmfilename$ = fileout$ + ".par”
ELSE
parmfilename$
END IF

parm$

PRINT "The Default X,Y data file name is: ";

COLOR O, 7

PRINT fileout$ + ".dat"

COLOR 7, 0

INPUT "Press [ENTER] for default, else enter X,Y data file name *.DAT. ", data$

IF LEN(data$) = O THEN
datafilename$ = fileout$ + ".dat”
ELSE
datafilename$ = data$
END IF
GOTO arnd:
END IF

IF cont$ = "H" THEN
CLS
PRINT
PRINT
PRINT "A continuation means that you have already digitizing data from a "
PRINT "SCREEN image during a prior digitizing session and you would like"
PRINT "to continue at the point where you left the program during the prior "
PRINT "session. The additional information needed for continuation”™
PRINT "was saved in two auxiliary files. These files have a default”
PRINT "extension of *.DAT and *.PAR. "
PRINT "You will be requested to enter the proper filenames if you select”
PRINT "(Y)es for a continuation. "
PRINT "The first requested input is the graphics file.”
PRINT "The second requested input is the parameter file.”
PRINT "The third requested input is the ASCII data file."
PRINT
PRINT
GOTO doagn:
END IF

CLS

" Return point from error trapping routine "error2".

retry:

SCREEN 0O

LOCATE 3, 1

PRINT " "
LOCATE 3, 1

18

PRINT "To assist in finding the correct graphics input file,"

GOSUB drivesetup:

GOSUB filter:

INPUT "Enter the graphics input filename with suffix (i.e. file.PCX). ", pcximage$
CALL namechange(pcximage$, fileout$)

" If cont$ ="Y" then program skips around image conversion statements above.
' and ends up at label "arnd:".

arnd:
CLS

IF samereg% = 1 THEN GOTO arndrpt:
IF cont$ = "Y" THEN
repeat2:
PRINT "Do you wish to use the same axis registration points? "
PRINT "Enter (";
COLORO, 7
PRINT" Y ";
COLOR 7,0
PRINT ")es or (";
COLORO, 7
PRINT" N ";
COLOR 7,0
PRINT ")o."
ans$ = ""

DO WHILE ans$ = ""
ans$ = INKEY$
LOOP

ans$ = LEFT$(UCASES$(ans$), 1)

SELECT CASE ans$
CASE "Y"
samereg% = 1
CASE "N"
samereg% = 0
CASE ELSE
GOTO repeat2:
END SELECT

END IF

’

" If flag "samereg” = 1 then this is where program jumps to.

7

arndrpt:

CLS
pcxtype% = pcxGetFileType%(path$ + pcximage$)

19

IF (pcxtype% > = gsMINDISP) THEN
retcode% = gxVerifyDisplayType(pcxtype%)
IF (retcode% = gxSUCCESS) THEN
'We can ...
END IF
ELSE
PRINT "PCX file header is not recognized. Punt.”
STOP
END IF

‘Change from text screen mode to graphics screen mode.
‘Load in and display the graphics image using assembly language
‘library routines.

SCREEN smode%

' Globals
' Set up to display the correct resolution image.

SELECT CASE pcxtype%

CASEO
pcxtype% = gxCGA.4
PRINT "Image not a VGA image. Punt.”
STOP

CASE 1
pcxtype% = gxCGA.6
PRINT "Image not a VGA image. Punt.”
STOP
CASE 2
pcxtype% = gxEGA.D
PRINT "Image not a VGA image. Punt.”
STOP

CASE 3
pcxtype% = gxEGA.E
PRINT "Image not a VGA image. Punt.”
STOP

CASE 4
pcxtype% = gxEGA.F
PRINT "Image not a VGA image. Punt.”
STOP

CASE S
pcxtype% = gxEGA.10
PRINT "Image not a VGA image. Punt.”

STOP
CASE 6

pcxtype% = gxVGA.11
CASE 7

pcxtype% = gxVGA.12

20

CASE 8
pcxtype% = gxVGA.13
PRINT "Image is 320X200 pixels by 256 colors.”
PRINT "Image not to 640 X 480 specifications.”

STOP
END SELECT
retcode% = gxSUCCESS
tempret% = gxSUCCESS

' Display program header

' Set the display type and mode we will be using
retcode% = gxSetDisplay%(pcxtype%)

’ Now enter graphics mode
retcode% = gxSetMode%(gxGRAPHICS)

' Now display the image file

IF (retcode% = gxSUCCESS) THEN
retcode% = pcxFileDisplay%(path$ + pcximage$, 0, 0, 0)
END IF

' Check if everything went OK
IF (retcode% <> gxSUCCESS) THEN
PRINT
PRINT "An error occurred: ["; retcode%; "1"
PRINT
PRINT "You may not have a CGA, EGA, or VGA / the image may not"
PRINT "be in the current directory ..."
PRINT
END IF

IF cont$ = "Y" THEN
parmfilename$ = path$ + parmfilename$
OPEN parmfilename$ FOR INPUT AS #10
INPUT #10, oldpointi%, phi!, startx, starty, endx, endy, endxy, endyy
INPUT #10, kbstartx, kbendx, kbstarty, kbendy
oldstartx = startx ’‘Save for deriving correction factor for x.
oldstarty = starty ‘Save for deriving correction factor for vy.

21

lenX! = ({endx - startx}))} / COS(phi!)
lenY! = ABS((endyy - starty)) / COS(phi!)
UserX! = lenX! / (kbendx - kbstartx)
UserY! = lenY! / (kbendy - kbstarty)

FOR 1% = 1 TO oldpointi%
INPUT #10, x%({1%), y%{1%)
NEXT 1%
CLOSE #10
END IF

cont:
CALL Mouselnit
CALL MouseShow
LOCATE 29, 1
PRINT " "
LOCATE 29, 1
PRINT "Enter (Y)es to draw a screen grid, otherwise PRESS ANY KEY to proceed. ";
kpress$ = ""

DO WHILE kpress$ = ""
kpress$ = INKEY$
LOOP

IF UCASE$(kpress$) = "Y" THEN

IF cont$ = "Y" AND samereg% = 1 THEN
CALL DrawGrid(startx, starty, endx, endy, kbstartx, kbstarty, kbendx, kbendy, phi!)
LINE (startx, starty)-(endx, endy), 3
LINE (startx, starty)-(endxy, endyy), 3
grid% = 0
END IF

grid%
ELSE

grid%
END IF

I

]
o

'If this is a continuation skip around the inputs that follow

IF samereg% = 1 THEN GOTO skip:
stx:
LOCATE 29, 1
PRINT " "
LOCATE 29, 1
ON ERROR GOTO stx:

22

INPUT ; "Enter the starting X, then ending X value (ex. 0, 22). ", kbstartx, kbendx
ON ERROR GOTO O
IF kbstartx > kbendx THEN
LOCATE 29, 1
PRINT " "
LOCATE 29, 1
PRINT "The starting X must be smaller than the ending X. Press Any Key. ";
kpress$ = ""
DO WHILE kpress$ = ""
kpress$ = INKEY$
LOOP
GOTO stx:
END IF

xrange = ABS(kbendx - kbstartx)
sty:
LOCATE 29, 1
PRINT " "
LOCATE 29, 1
INPUT ; "Enter the starting Y, then ending Y value (ex. 0, 11). ", kbstarty, kbendy

IF kbstarty > kbendy THEN
LOCATE 29, 1
PRINT " "
LOCATE 29, 1
PRINT "The starting Y must be smaller than the ending Y. Press Any Key. ";
kpress$ = ""
DO WHILE kpress$ = ""
kpress$ = INKEY$
LOOP
GOTO sty:
END IF

redo: ‘Redo input if angle between axes is too extreme. (>0.5°)
regx = 1
LOCATE 29, 1
PRINT "Using the mouse pointer, click on the lower left registration point.”;
Ip1:
CALL MousePoll{row, col, IButton, rButton, done%, regx, regy, kbstarty, kbendy, kbstartx, kbendx)
IF regx = O THEN GOTO Ip11:
GOTO Ip1:
Ip11: regx = 2

LOCATE 29, 1

PRINT " "

LOCATE 29, 1

PRINT "Using the mouse pointer click on the lower right registration point.”;

Ip2:
CALL MousePoll(row, col, IButton, rButton, done%, regx, regy, kbstarty, kbendy, kbstartx, kbendx)
IF regx = O THEN GOTO Ip22:
GOTO Ip2:

23

Ip22: regy = 2

LOCATE 29, 1

PRINT " b

LOCATE 29, 1

PRINT "Using the mouse pointer click on the upper left registration point.”;
Ip3:

CALL MousePoll{row, col, IButton, rButton, done%, regx, regy, kbstarty, kbendy, kbstartx, kbendx)
IF regy = O THEN GOTO Ip33:
GOTO Ip3:
Ip33:
‘Angle of rotation (If Phi is positive then image is rotated counter clockwise).
phi! = ATN((starty - endy) / (endx - startx))
yrange = ABS(kbendy - kbstarty)
‘Length of X line in screen units
Lx! = endx - startx
‘Calculate angle between X and Y axes on the basis of the markers.
phi2! = ATN{(ABS(endxy - startx) / ABS(endyy - starty))

IF endxy > startx THEN

phi2! = -phi2
rotation$ = "CW"
ELSE

rotation$ = "CCW"
END IF

phi2deg! = FNdeg!(phi2!)

phi2deltadeg! = phi2deg!

LOCATE 29, 1

PRINT " "
LOCATE 29, 1

phideg! = FNdeg!(phi!)

IF phideg! < 0 THEN

PRINT USING "X-axis CW ###_##° ", ABS(phideg!);
ELSE

PRINT USING "X-axis CCW ###.##° "; ABS(phideg!);
END IF

LOCATE 29, 25

PRINT " "

LOCATE 29, 25
PRINT USING " Y-axis " + rotation$ + " ###.##° \\"; ABS(phi2deltadeg!);
lenX! = ((endx - startx)) / COS(phi!)
lenY! = ABSl(endyy - starty)) / COS(phi!)

‘Inches per screen unit

UserX! = lenX! / (kbendx - kbstartx)
UserY! = lenY! / (kbendy - kbstarty)

PRINT " PRESS ANY KEY to proceed.";

DO WHILE INKEY$ = ™"
LOOP
IF ABS(phi2deltadeg! - phideg!) > .5 THEN

24

LOCATE 29, 1

PRINT " "

LOCATE 29, 1

PRINT "The axes are skewed by more then 0.5°, PRESS ANY KEY to proceed.";

DO WHILE INKEY$ = ""
LOOP

Iback:
LOCATE 29, 1
PRINT " "
LOCATE 29, 1
PRINT "Display the grid anyway? (Y)es or {N)o. ";
ans$ = ""

DO WHILE ans$ = ""
ans$ = INKEY$
ans$ = UCASE$(ans$)
LOOP

IF ans$ = "Y" THEN
GOTO skip:
END IF

IF ans$ = "N" THEN

CLS

retcode% = pcxFileDisplay%(path$ + pcximage$, 0, 0, 0)
END IF

IF ans$ <> "Y" AND ans$ <> "N" THEN
LOCATE 29, 1
PRINT " "
PRINT "Please Enter (Y)es or (N)o. Press any key."
kpress$ = ""

DO WHILE kpress$ = ""
kpress$ = INKEY$
LOOP
GOTO Iback:
END IF

END IF

IF samereg% = 1 THEN

25

CIRCLE (startx, starty), 3, 10

PAINT (startx, starty), 13, 10

CIRCLE (endx, endy), 3, 10

PAINT (endx, endy), 13, 10

CIRCLE (endxy, endyy), 3, 10

PAINT (endxy, endyy), 13, 10
END IF

IF cont$ = "Y" THEN

IF samereg% = O THEN ’'Correct for shift of shreen
corstartx = startx - oldstartx
corstarty = starty - oldstarty
FOR 1% = 1 TO oldpointi%

x{1%) = x{1%) + corstartx

y(1%) = y(I%) + corstarty
NEXT 1%
samereg% = 0
END IF

FOR [% = 1 TO oldpointi%
CIRCLE {x%(1%), y%(I%)), 3, 10
PAINT (x%(1%), y%(1%)), 13, 10
NEXT 1%

END IF

LOCATE 29, 1

PRINT " "
LOCATE 29, 1

PRINT " "
LOCATE 29, 1

PRINT "Mouse keys (LEFT = Store pt. RIGHT = Stop).";

DO
CALL MousePoll{row, col, IButton, rButton, done%, regx, regy, kbstarty, kbendy, kbstartx, kbendx)
IF pointi <> 0 AND es% = 0 THEN
x%(pointi + oldpointi%) = col
y%(pointi + oldpointi%) = row
END IF
er$ = INKEY$
IFer$ = "" THEN GOTO arndASCstmt:

26

IF ASCler$) = 27 THEN ‘Escape key pressed. Decrement pointer

IF pointi > 1 THEN
CIRCLE (x%({pointi + oldpointi%), y%(pointi + oldpointi%)), 2, 4
PAINT (x%(pointi + oldpointi%), y%(pointi + oldpointi%)), 4, 4
pointi = pointi - 1
BEEP
LOCATE 29, 45
PRINT " "
COLOR 14
LOCATE 29, 45
PRINT USING " ## HiAR# #E# Au## ### ", pointi + oldpointi%; arrayX(pointi);
arrayY(pointi);
COLOR 15
es% =1
END IF

er$ =""
END IF
arndASCstmt:

IF done% = 1 THEN GOTO done:
LOOP

' Do the file work next.

' Save the actual X,Y data in a file.

' Select the default file name or enter a new name.
* If file name already exists, give options

' The right mouse button has been pushed. Finish up with
’ saving the data in files.

l

done:
‘Change screen display back to a text screen from graphics screen.
SCREEN O

PRINT "Enter the name of the X-Y data output file.”

PRINT "(Enter up to 8 characters for the file name, a decimal point,”
PRINT "and then up to a 3 character extension)."

CALL namechange(pcximage$, fileout$)

PRINT "The current default file name is: ";

COLOR O, 7

PRINT fileout$ + ".dat"

27

COLOR 7,0
LINE INPUT "To accept the default name press [ENTER], else enter new name. "; filename$

IF LEN(filename$) = O THEN

datafilename$ = path$ + fileout$ + ".DAT"
ELSE

datafilename$ = path$ + filename$
END IF

CLS

PRINT "The values are comma separated, with a X, Y pair on each line."”
PRINT "The output format is free format.”

ON ERROR GOTO error1:

OPEN datafilename$ FOR INPUT AS #2

ON ERROR GOTO O

CLOSE #2

PRINT

'File already existed, make selection to overwrite, append or select new name.

IF UCASES$(LEFT$(cont$, 1)) <> "Y" THEN
COLOR O, 7
PRINT datafilename$; " already exits.”
COLOR 7,0
ans$ = """

DO WHILE ans$ <> "Y" AND ans$ <> "A" AND ans$ <> "N"
PRINT "Enter Y = Overwrite, A = Append, or else N to enter a different name. ";
kpress$ = ""

DO WHILE kpress$ = ""
kpress$ = INKEY$
LOOP

ans$ = UCASE$(kpress$)
LOOP

IF ans$ = "Y" THEN
KILL datafilename$
GOTO proceed:

END IF

IF ans$ = "A" THEN
append$ = "A"
GOTO proceed:

END IF

datafilename$ = ""
GOTO done:
END IF

proceed:

28

ON ERROR GOTO 0

IF append$ = "A" OR cont$ = "Y" THEN
CLOSE #3
OPEN datafilename$ FOR APPEND AS #3
append$ = ""
ELSE
OPEN datafilename$ FOR OUTPUT AS #3
END IF

FOR 1% = 1 TO pointi

PRINT #3, USING " #### . ###_, ###E ###"; arrayX(1%); arrayY(1%)
NEXT 1%
CLOSE #3

CALL namechange(pcximage$, fileout$)

CLOSE #10

parmfileout$ = fileout$ + ".par”

parmfileout$ = path$ + parmfileout$

‘Write out the file digitizing parameters.

OPEN parmfileout$ FOR OUTPUT AS #10

PRINT #10, pointi + oldpointi%, phi!, startx, starty, endx, endy, endxy, endyy
PRINT #10, kbstartx, kbendx, kbstarty, kbendy

FOR 1% = 1 TO pointi + oldpointi%
PRINT #10, x%(1%), y%(I%)
NEXT 1%

CLOSE #10

CLS

PRINT "Press Space bar to RUN program again, else any other key EXIT."
PRINT "";

s$ =""

DO WHILE s$ = ""
s$ = INKEY$
LOOP

7

* ASCII character 32 is the space bar.

’

IF s$ = CHR$(32) THEN

CLOSE #2

CLS

cont$ = ""

done% = 0

pointi = O

GOTO runplotagn:
ELSE

CLS

GOTO done1:
END IF

29

done1l:

CLS

PRINT " ALL DONE."
BEEP

BEEP

CLOSE #1

GOTO terminate:

‘Display all files in the selected drive and path.

filter:

PRINT "To assist in finding the correct graphics input file,"
PRINT "enter a wild card file filter to display a subset of the"
PRINT "directory’s files.”

PRINT "(i.e. *.dat or *.bin). [ENTER]=*.*"

LINE INPUT filter$

CLS

IF filter$ = "" THEN filter$ = "*.*"

IF LEFT $(filter$, 1) = CHR$(34) THEN

'Strip off and quotation marks from the beginning and end.
I = LEN(filter$)
filter$ = MID$(filter$, 2,1- 1)

IF RIGHT $(filter$, 1) = CHR$(34) THEN
filter$ = MID$(filter$, 1,1- 2)
END IF

END IF

dpath$ = path$ + filter$

filter2:

PRINT "The selected drive and path: "; dpath$
ON ERROR GOTO er1:

PRINT "The default working directory: ";
FILES dpath$

ON ERROR GOTO O

PRINT

PRINT "Enter (";

COLOR O, 7

PRINT " F ";

COLOR 7,0

PRINT ") to try another file filter, "
PRINT "press (";

COLOR O, 7

PRINT"C ";

COLOR 7,0

PRINT ") to CHANGE Drive and Path.”
PRINT "press (";

COLOR O, 7

PRINT" P ";

COLOR 7,0

PRINT ") to proceed. "; ""

30

ans$ = ""

DO WHILE ans$ = ""

ans$ = INKEY$
ans$ = UCASE$(ans$)
LOOP
IF ans$ = "F" THEN
GOTO filter:
END IF

IF ans$ = "C" THEN
GOSUB drivesetup:
GOTO filter2:

END IF

IF ans$ = "P" THEN
RETURN
END IF

IF ans$ <> "F" AND ans$ <> "P" AND ans$ <> "C" THEN
CLS
PRINT "Please enter F, C, or P."
GOTO filter2:

END IF

RETURN

drivesetup:

* Set up the drive and path for the batch files and programs.
COLOR 23

PRINT "Enter the drive and path of the image/data files.”
COLOR 7

PRINT

PRINT " (i.e. A:\temp)”

PRINT

PRINT "[ENTERI] on an empty line means your files are in the"
INPUT "current directory. ", path$

CLS

IF LEN(path$) = O THEN
path$ = ""
RETURN

END IF

agn3:

IF LEN(path$) < 2 THEN
PRINT "Enter (";
COLOR O, 7

31

PRINT" Y ";
COLOR 7,0

PRINT "Jes if ";
COLOR O, 7

PRINT path$;
COLOR 7,0

PRINT " is a drive letter, else press (";
COLOR O, 7

PRINT " N ";
COLOR 7,0

PRINT ") if a path.”
ans$ = ""

kpress$ = ""

DO WHILE kpress$ = ""
kpress$ = INKEY$
LOOP

ans$ = UCASE$(kpress$)

IFans$ <> "Y" AND ans$ <> "N" THEN
PRINT "Please respond with Y or N.”

GOTO agn3:
END IF
IF ans$ = "Y" THEN
path$ = path$ + ":"
END IF
END IF

IF RIGHT $(path$, 1} <> "\" THEN
path$ = path$ + "\"
END IF

dpath$ = path$ + filter$

RETURN

’

’ This is the end of the program

’

terminate: END

32

IF ERR = 53 THEN
PRINT
PRINT " No match.”
PRINT
PRINT "Press (";
COLORO, 7
PRINT"C";
COLOR 7,0
PRINT ") to Change the Drive and Path,”
PRINT "Press ";
COLOR O, 7
PRINT " ANY OTHER KEY ";
COLOR 7,0
PRINT "to change file filter.”
kpress$ = ""
DO WHILE kpress$ = ""
kpress$ = INKEY$
cont$ = UCASE$(kpress$)

LOOP

IF cont$ = "C" THEN
GOSUB drivesetup:

END IF

RESUME filter2:
END IF

PRINT "ERROR DETECTED. "; ERR
PRINT "LINE DETECTED. "; ERL

IFERR = 71 THEN
path$ = ""
PRINT
COLOR 23
PRINT "* * NO disk in drive or drive door OPEN * *."
COLOR 7
PRINT "Close drive door or select the correct drive, and then restart program.”
GOTO terminate:
END IF

PRINT "Debug and restart program.”
GOTO terminate:

errorl:

IF ERR = 53 THEN
CLOSE #2

IF UCASES$(LEFT$(cont$, 1)) = "Y" THEN
PRINT "Cannot continue with this file name selection.”
PRINT "Select another file name.”
PRINT "Press ANY KEY to proceed.”

33

DO WHILE INKEYS$ = ™"
LOOP

RESUME done:
END IF

RESUME proceed:
END IF

PRINT "ERROR DETECTED. "; ERR
PRINT "LINE DETECTED. "; ERL
PRINT "Debug and restart program.”
GOTO terminate:

‘Unable to set the screen mode to 12 (VGA is required.)

wrongscrn:

PRINT "This program requires a VGA adapter. Please run the program on "
PRINT "a system with a VGA adapter. "

GOTO terminate:

’

' Trap for file not found error.

error2:

IF ERR = 53 THEN
PRINT "Graphics input file not found. Please retry with a new name."
FILES " *.bin"
RESUME retry:

END IF

PRINT "ERROR DETECTED. "; ERR
PRINT "LINE DETECTED. "; ERL
PRINT "Debug and restart program.”
GOTO terminate:

7

' Trap for file not found error with a different outcome.

error3:

PRINT "ERROR DETECTED. "; ERR
PRINT "LINE DETECTED. "; ERL
PRINT "Debug and restart program.”
GOTO terminate:

34

SUB namechange (filein$, firstname$) STATIC
'Determine the first part of the input file name.
| = LEN(filein$)
FORI1% = 1TOI
char$ = MIDS$(filein$, 1%, 1)
IF char$ = "." THEN
EXIT FOR
END IF
NEXT 1%
'Handle condition where file input name does not have an extension.
IF1% > | THEN
' Reached end of file name with no decimal point found.
' No file. name extension. Assume .PCX and affix to filename.
firstname$ = filein$
filein$ = filein$ + ".PCX"
EXIT SUB
END IF

firstname$ = LEFT$(filein$, 1% - 1)

END SuUB

SUB screenmode (smode%)
smode% = 12
END SUB

SUB wdir (d$)

LOCATE 1, 1

PRINT " "

LOCATE 1, 1

dig ="

IFd$ <> "" THEN
PRINT "Press [ENTER] to select "; d$; " as disk and directory "
INPUT "or enter the drive and subdirectory (i.e. C:\SUB1\). ", d1$

ELSE

PRINT " There is no previous selection of drive or directory.”
INPUT " Enter the drive and subdirectory (i.e. C:\SUB1}). ", d1$

END IF
IFd1$ = "" THEN EXIT SUB
d$ = d1$

END SUB

35

MOUSE.BAS

DECLARE SUB DrawGrid (startx!, starty!, endx!, endy!, kbstartx!, kbstarty!, kbendx!, kbendy!, phi!)
DECLARE SUB SvPoint {row%, col%, pointi%)

COMMON SHARED /block1/ phi!, pointi, startx, starty, startxy, startyy, endx, endy, endxy, endyy
COMMON SHARED /block2/ UserX!, UserY!, grid%, kbstarty, kbendy, oldpointi%, SX%, SY%, es%

MOUSE.BAS - Mouse Support Routines for the User Interface Toolbox in
Microsoft BASIC 7.1, Professional Development System
Copyright (C) 1987-1990, Microsoft Corporation

" NOTE: This sample source code toolbox is intended to demonstrate some
! of the extended capabilities of Microsoft BASIC 7.1 Professional

! Development system that can help to leverage the professional

! developer’'s time more effectively. While you are free to use,

’ modify, or distribute the routines in this module in any way you

‘ find useful, it should be noted that these are examples only and

! should not be relied upon as a fully-tested "add-on" library.

PURPOSE: These routines are required for mouse support in the user
interface toolbox, but they may be used independently as well.

For information on creating a library and QuickLib from the routines
contained in this file, read the comment header of GENERAL.BAS.

DEFINT B-D, F-J, L-O, Q-R, T-Z

'$INCLUDE: 'general.bi’

‘$INCLUDE: 'mouse1.bi’

‘$INCLUDE: 'menu.bi’

COMMON SHARED arrayX(), arrayY()

COMMON SHARED /uitools/ GloMenu AS MenuMiscType
COMMON SHARED /uitools/ GloTitle(} AS MenuTitleType
COMMON SHARED /uitools/ Gloltem() AS MenultemType

SUB DrawGrid (startx, starty, endx, endy, kbstartx, kbstarty, kbendx, kbendy, phi)

phi = ATN((starty - endy) / (endx - startx))
IF phi < .0176 THEN ‘Do not draw if angle > 1 degree

pixinX = endx - startx

pixperunitX = pixinX / (kbendx - kbstartx)

pixinY = starty - endyy

pixperunitY = pixinY / (kbstarty - kbendy)

numYlines = ABS(ABS(kbendy) - kbstarty)

FOR i% = 1 TO numYlines

LINE (startx, starty + pixperunitY * i%)-(endx, endy + pixperunitY * i%), 3
NEXT i%
numXlines = ABS{ABS(kbendx) - kbstartx)

36

FOR i% = 1 TO numXlines
LINE (startx + pixperunitX * i%, starty)-(endxy + pixperunitX * i%, endyy), 3
NEXT i%
ELSE
LOCATE 29, 1
PRINT " "
LOCATE 29, 1
PRINT "Correction angle too large. Grid not drawn! PRESS ANY KEY. ";
DO WHILE INKEYS$ = ™"
LOOP
END IF

END SuB

SUB MouseBorder (row1, col1, row2, col2) STATIC

* Sets max and min bounds on mouse movement both vertically, and
* horizontally

MouseDriver 7, O, (col1 - 1) * 8, (col2-1) * 8
MouseDriver 8, 0, (row1 -1) * 8, (row2-1) * 8

END SuB
SUB MouseDriver (m0, m1, m2, m3) STATIC
DIM regs AS RegType

IF MouseChecked = FALSE THEN
DEF SEG = 0

MouseSegment& = 256& * PEEK(207) + PEEK(206)
MouseOffset& = 256& * PEEK(205) + PEEK(204)

DEF SEG = MouseSegment&

IF (MouseSegment& = 0 AND MouseOffset& = 0) OR PEEK(MouseOffset&) = 207 THEN

MousePresent = FALSE
MouseChecked = TRUE
DEF SEG
END IF
END IF

IF MousePresent = FALSE AND MouseChecked = TRUE THEN

EXIT SUB
END IF

37

regs.ax = m0

regs.bx = m1
regs.cx = m2
regs.dx = m3

Interrupt 51, regs, regs

mO = regs.ax
m1 = regs.bx
m2 = regs.cx
m3 = regs.dx

IF MouseChecked THEN EXIT SUB

IF mO AND NOT MouseChecked THEN
MousePresent = TRUE
DEF SEG

END IF

MouseChecked = TRUE
END SUB

SUB MouseHide

MouseDriver 2, 0, 0, 0
END SUB

SUB Mouselnit

' Mouse driver’s initialization routine

MouseDriver 0, O, 0, O
END SuB

SUB MousePoll (SY %, SX%, IButton, rButton, done %, regx, regy, kbstarty, kbendy, kbstartx, kbendx!)
STATIC

' Polls mouse driver, then sets parms correctly

’ This routine has been extensively modified for use with SCRNDIG.BAS
' The mouse is checked for movement of more than 5 pixels in either
"XorY.

' The end point registration and origin are selected here.

' Rotation of the X-Y system is corrected here.

' and the data points are displayed on the screen here.

SHARED arrayX(), arrayY(), pointi, startx, starty, startxy, startyy, endx, endy, endxy, endyy
SHARED phil, UserX!, UserY!, grid%, oldpointi%, es%
MouseDriver 3, button, col, row

' The left mouse button was pushed.
IF button AND 1 THEN

IButton = TRUE
ELSE

IButton = FALSE
END IF

' The right mouse button was pushed.
IF button AND 2 THEN
rButton = TRUE
ELSE
rButton = FALSE
END IF
IF rButton
done%
END IF

‘The cursor has moved at least five pixels from the last point and
‘the button has been pressed to save another point.

(AR
IF IButton = -1 AND ((ABS(SX% - col) > 5) OR $4BS(SY% - row) > 5)) THEN

29

" The origin of the X-Y system.

IF regx = 1 THEN
startx = col
starty = row
startxy = col
startyy = row

regx = 0

SX% = col

SY% = row

BEEP

EXIT SUB
END IF

" The end of the X line.

IF regx = 2 THEN

endx = col
endy = row
regx = 0
SX% = col
SY% = row
BEEP
LINE (startx, starty)-(endx, endy)}, 3
EXIT SUB
END IF

" The end of the Y line.

IFregy = 2 THEN
endxy = col
endyy = row
regy = 0
LINE (startx, starty)-(endxy, endyy), 3
SX% = col
SY% = row

" Draw the grid.
IF grid% = 1 THEN
CALL DrawGrid(startx, starty, endx, endy, kbstartx, kbstarty, kbendx, kbendy, phi!)
END IF
BEEP
EXIT SUB
END IF
inside:

" Mark the previously digitized point.

IF pointi = O THEN GOTO Id2:

40

IF es% = O THEN
CIRCLE {SX%, SY%), 2, 13
PAINT (SX%, SY%), 13, 13
END IF

es% =0
Id2: pointi = pointi + 1

'Correct for skewness with simple conversion routine.
'Assumption is that there is only a rotation about the origin
‘Al and B! are the X,Y values minus the origin X,Y

Al = (col - startx)
= (starty - row)

IFA! <> 0 THEN ’'Not on the Y axis
phi3! = ATN(B! / A!)

ELSE
phi3! = 3.14159 /2

END IF

IF phi3! < > phi! THEN
IF phi3! = 0 THEN
BB! = Al
GOTO arnd2:
END IF
BB! = B! / SIN(phi3!)
ELSE
BB! = A! ‘On the X axis and they are equal.
END IF

arnd2: corrX! = BB! * COS(phi3! - phi!)
corrY! = BB! * SIN(phi3! - phi!)
arrayX(pointi} = kbstartx + (corrX! / UserX!)
arrayY(pointi) = kbstarty + (corrY! / UserY!)
BEEP
LOCATE 29, 45
PRINT " "
COLOR 14
LOCATE 29, 45
PRINT USING " ## #EHEH#E REERHERE "; pointi + oldpointi%; arrayX(pointi);
arrayY (pointi);

COLOR 15
SX% = col
SY% = row
END IF
END SUB

41

SUB MouseShow

MouseDriver 1,0, 0, O

END SuUB

42

